bbk/src/http/sha1.cpp
2025-10-13 10:38:50 +02:00

306 lines
9.6 KiB
C++

// Copyright (c) 2018 The Swedish Internet Foundation
// Based on public domain code.
// Modified by Göran Andersson <initgoran@gmail.com>
#include <sstream>
#include <iomanip>
#include <fstream>
#include <string.h>
#include "sha1.h"
static char base64(unsigned int value_in) {
static const char* encoding = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
if (value_in > 63)
return '=';
return encoding[static_cast<int>(value_in)];
}
// encode len bytes starting at src, write to dst.
// number of bytes written will be 4 times the smallest integer >= len/3.
void base64_encode(const unsigned char *src, size_t len, char *destination) {
char *p = destination;
while (len >= 3) {
len -= 3;
*p++ = base64(src[0] >> 2);
*p++ = base64(static_cast<unsigned char>((src[0] & 0x3) << 4) + (src[1] >> 4));
*p++ = base64(static_cast<unsigned char>((src[1] & 0xf) << 2) + (src[2] >> 6));
*p++ = base64(src[2] & 0x3f);
src += 3;
}
switch (len) {
case 2:
*p++ = base64(src[0] >> 2);
*p++ = base64(static_cast<unsigned char>((src[0] & 0x3) << 4) + (src[1] >> 4));
*p++ = base64(static_cast<unsigned char>((src[1] & 0xf) << 2));
break;
case 1:
*p++ = base64(src[0] >> 2);
*p++ = base64(static_cast<unsigned char>((src[0] & 0x3) << 4));
break;
}
switch ((p-destination)%4) {
case 3:
*p++ = '=';
#ifdef __clang__
[[clang::fallthrough]];
#elif defined __GNUC__
#if __GNUC__ > 6
[[gnu::fallthrough]];
#endif
// -Wimplicit-fallthrough=0
#endif
case 2:
*p++ = '=';
#ifdef __clang__
[[clang::fallthrough]];
#elif defined __GNUC__
#if __GNUC__ > 6
[[gnu::fallthrough]];
#endif
// -Wimplicit-fallthrough=0
#endif
case 1:
*p++ = '=';
break;
}
}
namespace {
int _one = 1;
}
bool SHA1::is_big_endian = (*(reinterpret_cast<int8_t *>(&_one)) == 0);
/* Help macros */
#define SHA1_ROL(value, bits) (((value) << (bits)) | (((value) & 0xffffffff) >> (32 - (bits))))
#define SHA1_BLK(i) (block[i&15] = SHA1_ROL(block[(i+13)&15] ^ block[(i+8)&15] ^ block[(i+2)&15] ^ block[i&15],1))
/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
#define SHA1_R0(v,w,x,y,z,i) z += ((w&(x^y))^y) + block[i] + 0x5a827999 + SHA1_ROL(v,5); w=SHA1_ROL(w,30)
#define SHA1_R1(v,w,x,y,z,i) z += ((w&(x^y))^y) + SHA1_BLK(i) + 0x5a827999 + SHA1_ROL(v,5); w=SHA1_ROL(w,30)
#define SHA1_R2(v,w,x,y,z,i) z += (w^x^y) + SHA1_BLK(i) + 0x6ed9eba1 + SHA1_ROL(v,5); w=SHA1_ROL(w,30)
#define SHA1_R3(v,w,x,y,z,i) z += (((w|x)&y)|(w&x)) + SHA1_BLK(i) + 0x8f1bbcdc + SHA1_ROL(v,5); w=SHA1_ROL(w,30)
#define SHA1_R4(v,w,x,y,z,i) z += (w^x^y) + SHA1_BLK(i) + 0xca62c1d6 + SHA1_ROL(v,5); w=SHA1_ROL(w,30)
SHA1::SHA1(char *buf) :
the_res(buf) {
}
void SHA1::update(const char *key) {
std::istringstream is(key);
/* SHA1 initialization constants */
digest[0] = 0x67452301;
digest[1] = 0xefcdab89;
digest[2] = 0x98badcfe;
digest[3] = 0x10325476;
digest[4] = 0xc3d2e1f0;
/* Reset counters */
transforms = 0;
std::string buffer;
std::string rest_of_buffer;
read(is, rest_of_buffer, static_cast<int>(BLOCK_BYTES) - static_cast<int>(buffer.size()));
buffer += rest_of_buffer;
while (is) {
uint32_t block[BLOCK_INTS];
buffer_to_block(buffer, block);
transform(block);
read(is, buffer, BLOCK_BYTES);
}
/* Total number of hashed bits */
uint64_t total_bits = (transforms*BLOCK_BYTES + buffer.size()) * 8;
/* Padding */
buffer += static_cast<char>(0x80);
unsigned int orig_size = static_cast<unsigned int>(buffer.size());
while (buffer.size() < BLOCK_BYTES) {
buffer += static_cast<char>(0x00);
}
uint32_t block[BLOCK_INTS];
buffer_to_block(buffer, block);
if (orig_size > BLOCK_BYTES - 8) {
transform(block);
for (unsigned int i = 0; i < BLOCK_INTS - 2; i++) {
block[i] = 0;
}
}
/* Append total_bits, split this uint64_t into two uint32_t */
block[BLOCK_INTS - 1] = static_cast<uint32_t>(total_bits);
block[BLOCK_INTS - 2] = (total_bits >> 32);
transform(block);
/* Base64 */
unsigned char *pp = reinterpret_cast<unsigned char *>(digest);
unsigned int pos = 0;
if (is_big_endian) {
base64_encode(pp, 20, the_res);
return;
}
// Byte order is 3, 2, 1, 0, 7, 6, 5, 4, 11, ...
the_res[pos++] = base64(pp[3] >> 2);
the_res[pos++] = base64(static_cast<unsigned char>((pp[3] & 0x3) << 4) + (pp[2] >> 4));
the_res[pos++] = base64(static_cast<unsigned char>((pp[2] & 0xf) << 2) + (pp[1] >> 6));
the_res[pos++] = base64(pp[1] & 0x3f);
the_res[pos++] = base64(pp[0] >> 2);
the_res[pos++] = base64(static_cast<unsigned char>((pp[0] & 0x3) << 4) + (pp[7] >> 4));
the_res[pos++] = base64(static_cast<unsigned char>((pp[7] & 0xf) << 2) + (pp[6] >> 6));
the_res[pos++] = base64(pp[6] & 0x3f);
the_res[pos++] = base64(pp[5] >> 2);
the_res[pos++] = base64(static_cast<unsigned char>((pp[5] & 0x3) << 4) + (pp[4] >> 4));
the_res[pos++] = base64(static_cast<unsigned char>((pp[4] & 0xf) << 2) + (pp[11] >> 6));
the_res[pos++] = base64(pp[11] & 0x3f);
the_res[pos++] = base64(pp[10] >> 2);
the_res[pos++] = base64(static_cast<unsigned char>((pp[10] & 0x3) << 4) + (pp[9] >> 4));
the_res[pos++] = base64(static_cast<unsigned char>((pp[9] & 0xf) << 2) + (pp[8] >> 6));
the_res[pos++] = base64(pp[8] & 0x3f);
the_res[pos++] = base64(pp[15] >> 2);
the_res[pos++] = base64(static_cast<unsigned char>((pp[15] & 0x3) << 4) + (pp[14] >> 4));
the_res[pos++] = base64(static_cast<unsigned char>((pp[14] & 0xf) << 2) + (pp[13] >> 6));
the_res[pos++] = base64(pp[13] & 0x3f);
the_res[pos++] = base64(pp[12] >> 2);
the_res[pos++] = base64(static_cast<unsigned char>((pp[12] & 0x3) << 4) + (pp[19] >> 4));
the_res[pos++] = base64(static_cast<unsigned char>((pp[19] & 0xf) << 2) + (pp[18] >> 6));
the_res[pos++] = base64(pp[18] & 0x3f);
the_res[pos++] = base64(pp[17] >> 2);
the_res[pos++] = base64(static_cast<unsigned char>((pp[17] & 0x3) << 4) + (pp[16] >> 4));
the_res[pos++] = base64(static_cast<unsigned char>((pp[16] & 0xf) << 2));
}
/*
* Hash a single 512-bit block. This is the core of the algorithm.
*/
void SHA1::transform(uint32_t block[BLOCK_BYTES])
{
/* Copy digest[] to working vars */
uint32_t a = digest[0];
uint32_t b = digest[1];
uint32_t c = digest[2];
uint32_t d = digest[3];
uint32_t e = digest[4];
/* 4 rounds of 20 operations each. Loop unrolled. */
SHA1_R0(a,b,c,d,e, 0);
SHA1_R0(e,a,b,c,d, 1);
SHA1_R0(d,e,a,b,c, 2);
SHA1_R0(c,d,e,a,b, 3);
SHA1_R0(b,c,d,e,a, 4);
SHA1_R0(a,b,c,d,e, 5);
SHA1_R0(e,a,b,c,d, 6);
SHA1_R0(d,e,a,b,c, 7);
SHA1_R0(c,d,e,a,b, 8);
SHA1_R0(b,c,d,e,a, 9);
SHA1_R0(a,b,c,d,e,10);
SHA1_R0(e,a,b,c,d,11);
SHA1_R0(d,e,a,b,c,12);
SHA1_R0(c,d,e,a,b,13);
SHA1_R0(b,c,d,e,a,14);
SHA1_R0(a,b,c,d,e,15);
SHA1_R1(e,a,b,c,d,16);
SHA1_R1(d,e,a,b,c,17);
SHA1_R1(c,d,e,a,b,18);
SHA1_R1(b,c,d,e,a,19);
SHA1_R2(a,b,c,d,e,20);
SHA1_R2(e,a,b,c,d,21);
SHA1_R2(d,e,a,b,c,22);
SHA1_R2(c,d,e,a,b,23);
SHA1_R2(b,c,d,e,a,24);
SHA1_R2(a,b,c,d,e,25);
SHA1_R2(e,a,b,c,d,26);
SHA1_R2(d,e,a,b,c,27);
SHA1_R2(c,d,e,a,b,28);
SHA1_R2(b,c,d,e,a,29);
SHA1_R2(a,b,c,d,e,30);
SHA1_R2(e,a,b,c,d,31);
SHA1_R2(d,e,a,b,c,32);
SHA1_R2(c,d,e,a,b,33);
SHA1_R2(b,c,d,e,a,34);
SHA1_R2(a,b,c,d,e,35);
SHA1_R2(e,a,b,c,d,36);
SHA1_R2(d,e,a,b,c,37);
SHA1_R2(c,d,e,a,b,38);
SHA1_R2(b,c,d,e,a,39);
SHA1_R3(a,b,c,d,e,40);
SHA1_R3(e,a,b,c,d,41);
SHA1_R3(d,e,a,b,c,42);
SHA1_R3(c,d,e,a,b,43);
SHA1_R3(b,c,d,e,a,44);
SHA1_R3(a,b,c,d,e,45);
SHA1_R3(e,a,b,c,d,46);
SHA1_R3(d,e,a,b,c,47);
SHA1_R3(c,d,e,a,b,48);
SHA1_R3(b,c,d,e,a,49);
SHA1_R3(a,b,c,d,e,50);
SHA1_R3(e,a,b,c,d,51);
SHA1_R3(d,e,a,b,c,52);
SHA1_R3(c,d,e,a,b,53);
SHA1_R3(b,c,d,e,a,54);
SHA1_R3(a,b,c,d,e,55);
SHA1_R3(e,a,b,c,d,56);
SHA1_R3(d,e,a,b,c,57);
SHA1_R3(c,d,e,a,b,58);
SHA1_R3(b,c,d,e,a,59);
SHA1_R4(a,b,c,d,e,60);
SHA1_R4(e,a,b,c,d,61);
SHA1_R4(d,e,a,b,c,62);
SHA1_R4(c,d,e,a,b,63);
SHA1_R4(b,c,d,e,a,64);
SHA1_R4(a,b,c,d,e,65);
SHA1_R4(e,a,b,c,d,66);
SHA1_R4(d,e,a,b,c,67);
SHA1_R4(c,d,e,a,b,68);
SHA1_R4(b,c,d,e,a,69);
SHA1_R4(a,b,c,d,e,70);
SHA1_R4(e,a,b,c,d,71);
SHA1_R4(d,e,a,b,c,72);
SHA1_R4(c,d,e,a,b,73);
SHA1_R4(b,c,d,e,a,74);
SHA1_R4(a,b,c,d,e,75);
SHA1_R4(e,a,b,c,d,76);
SHA1_R4(d,e,a,b,c,77);
SHA1_R4(c,d,e,a,b,78);
SHA1_R4(b,c,d,e,a,79);
/* Add the working vars back into digest[] */
digest[0] += a;
digest[1] += b;
digest[2] += c;
digest[3] += d;
digest[4] += e;
/* Count the number of transformations */
transforms++;
}
void SHA1::buffer_to_block(const std::string &buffer, uint32_t block[BLOCK_BYTES])
{
/* Convert the std::string (byte buffer) to a uint32_t array (MSB) */
for (unsigned int i = 0; i < BLOCK_INTS; i++) {
block[i] = (buffer[4*i+3] & 0xff)
| static_cast<uint32_t>(buffer[4*i+2] & 0xff)<<8
| static_cast<uint32_t>(buffer[4*i+1] & 0xff)<<16
| static_cast<uint32_t>(buffer[4*i+0] & 0xff)<<24;
}
}
void SHA1::read(std::istream &is, std::string &s, int max) {
char sbuf[BLOCK_BYTES];
is.read(sbuf, max);
s.assign(sbuf, static_cast<size_t>(is.gcount()));
}